ASYMPTOTIC FORM OF THE AXISYMMETRIC ELASTICITY
PROBLEM FOR AN ANISOTROPIC CYLINDRICAL SHELL
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The idea of an asymptotic analysis of elasticity problems for thin bodies is due to Friedrichs {1, 2], who
showed that the solution of the linear elasticity problem for an isotropic plate differs from the solution of the
classical Kirchhoff equations in a boundary layer localized at the edge of the plate.

An asymptotic analysis of elasticity problems of isotropic and anisotropic shells was made in [3-9]. These
papers combined the use of the equations of linear elasticity theory, a choice of the degree of stretching of
variables from the feasibility condition for passing to the Kirchhoff— Love equations as a limit, and the expan-
sion of the required solution in powers of a small parameter proportional to the thickness.

An exact asymptotic analysis of the axisymmetric elasticity problem for an isotropic cylindrical shell
was performed in [10]. The method of homogeneous solutions was used to estimate the asymptotic orders of
the characteristic roots of the system and to establish the existence of three corresponding partxcular solutions
with different rates of change along the axial coordinate.

By using a simpler method than employed in {10] we establish the same results for an anisotropic cy-
lindrical shell as was obtained there for an isotropic shell: the asymptotic elasticity problem has a regular
solution and not more than two bhoundary-layer solutions with different variability indices, We investigate the
asymptotic form of the problem and construct iteration systems of equations for determining solutions of all
three types.

1. We consider the linear problem of the axisymmetric static deformation of an orthotropic cylindrical
shell as a three-dimensional elastic body,

Let a, b, and c be, respectively, the half-length, radius of the middle surface, and half-thickness of the
shell; t, is an orthogonal coordinate system fixed on the middle surface; the hy are its metric Lamé coeffi-
cients; emn, €y, €55, and eg are elements of the symmetric compliance matrix of the orthotropic material;
the Pp = bpp are the components of the external body forces; the oy are the components of the symmetric
stress tensor; the ey are the components of the symmetric strain tensor; the upy, = bwp are the components
of the displacement vector (the subscripts m and n take on the values 1, 2, 3).

The independent variables range over the limits
e l—a, al, tye [—n, al, = [—1, 1] (@ = o/b).
The Lamé coefficients are given by the equations
By =0, hy = b - cty, by = c.

The compliance coefficients do not depend on & (¢ = ¢/b). From the condition of axial symmetry the variable
parameters introduced do not depend on the tangential coordinate t,, Then the static problem of the linear elas-
ticity theory of an anisotropic elastic body is formulated by the following system of differential equations [11]:
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UgBas = Wy = @y (€071 + €2303; + €25033),
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Equations (1.1) are supplemented by one of the following systems of boundary conditions:

a) a system of stresses

F o
Gnslt3=¢1 = Sn3(ty), Om lt1=~7a = Spy (£3);

b) a system of displacements
Wnlt,=51 = Hug(ts), Walt=za= Hi (t5); (1.2)
c) a mixed system which combines some of conditions a) and some of b).

From the definition of a shell
el e o (1.3)

Consequently, system (1.1) contains a small parameter, Since for € = 0 the derivatives of the four required
functions wsy, 04y, 012, and o3 with respect to t; in (1.1) vanish, the system is singularly degenerate (singularly
perturbed) [12]. It is characteristic of such a system that its solution does not converge to the degenerate form
(for e = 0) in the immediate neighborhood of bounding values of that variable with respect to which the degen-
eracy occurs, The asymptotic method of boundary functions formulated in [12] for systems of ordinary differ-
ential equations takes account of this characteristic of singularly perturbed systems. The application of this
method to boundary value problem (1.1), (1.2) requires preliminary analysis.

System (1.1) corresponds to a homogeneous system which admits particular solutions of the form
Wy = Wh XD (B4/h -+ Lg/l),  Omn = O €XP (t1/A F15/p),

where wg, aomn, A, and p are constants. The corresponding characteristic equation determines the following
relations between its roots A and 1 and the small parameter €: A and ¢ do not depend on e, A ~ eu, and A ~
Vep; that is, the system has three types of solutions: 1) a regular (internal) solution with a variability index
equal to zero; 2) a boundary-layer solution with a variability index equal to 72; 3) a boundary-layer solu-
tion with a variability index equal to 1, The variability index is defined as the order of A relative to £ {7].
These solutions are constructed by using three asymptotic expansions: a regular expansion inpowers of €
without stretching of the axial coordinate; a boundary expansion in powers of € with stretching of the axial
coordinate proportional to el/2 a boundary expansion in powers of € with stretching of the axial coordinate

,

proportional to €. Consequently, the required functions w, and Omm 20 be written as the sums
Omn = an + Ymn + Zmnv Wy = Un + Vo + I"Vz-u Emn = Umn+ an + Wmm (1.4)

in which X ., Un, and Uy are regular series with a zero variability index; Yy, Vp, and Vypy are boundary
series with a variability index of 1/2; Zmns Wy, and Wyyp are boundary series with a variability index of 1.

2. The regular expansion is represented by the series

Ua by t) = 2 Ul (by 1)y Xunn (b1, L) = hZO &' 2l (11, 1a), 2.1
k=0 =

' < : 2 Lk (k
X’n3 (tlz ts) =& 2[ ekxg;) (tlv ts)v, Umn (tl.v t3) = hz-oﬁ u(!nr)t (tlz t3)'
h=0 =

Substitution of these series into (1.1) and a comparison of coefficients of identical powers of & leads to a se-
quence of systems, the first of which (corresponding to coefficients of £%) has the form
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(azxm)) F. at (a2 ) - ayps = 0; (2.2D)

J ,
ot (azx;,s)) — 2 a,py = 0. 2.2¢)

This system determines the displacements as functions of the single coordinate t;, and leads to the closed
system of the zero-moment theory of shells

(0) 0) ___ 0) ..
up =g (), Ue )=u20 (t1), u(s )=”3o (¢, (2.3)
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with the supplementary Egs. (2.2a)-(2.2¢), which determine the transverse stresses in terms of the stresses

of the zero-moment state. The transverse strains are determined in terms of the known stresses from the
following generalized Hooke's law equations:

] (0) ;0 (0)
Uls = eegiy’, Uss = gegesy,
Ugs=¢ (3313311 + eazx( )+ 33355(0))

Expansion (2.1) can satisfy all the boundary conditions in both stresses and displacements on the cylindrical
surfaces of the shell, but cannot satisfy the boundary conditions on the ends.

3. The first boundary expansion is performed in the homogeneous system corresponding to (1.1)

after
replacing the variable t; by
ﬁ]_ = tl/VE
It is represented by the series
)rij' (ﬁl, t:;) ,20 k/al/“; (ﬁi'f.s)x (3.1)
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The agreement of the dependent variables indicated here leads to the elimination of fractional powers of
the parameter & from the original system. Consequently, its solution can be represented by an expansion in
integral powers of £, so that the summation in series (3.1) needs to be performed only over even values of k.

By substituting series (3.1) into system (1.1) with the "stretched" independent variable #;, and equating

coefficients of identical integral powers of &€, a sequence of systems is obtained, the first of which (corre-
sponding to coefficients of £% has the form
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This system reduces to the closed system of Kirchhoff— Love equations
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with the supplementary equations (3.2a)-(3.2¢c) which determine the transverse stresses in terms of the tan-

gential stresses.
tions:

0 (0) 0 ()

Vis == geylis, Vos= €e55Ys3,

370 R () (0) (0)
Vis=¢ (9311/11) —+ e3alizy - €33Ys3 ).

The transverse strains are determined from the following generalized Hooke's law equa-

Expansion (3.1) gives a solution of the boundary-layer type with a variability index of 1/2, which still does

not permit satisfying all the boundary conditions on the ends of the shell,

4, The secondary boundary expansion is performed in the homogeneous system corresponding to (1,1),

after replacing the variable t; by

T, = ty/e.
It is represented by the series
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Expansion (4.1) gives a solution of the boundary-layer type with a variability index 1 (Friedrichs boundary
layer) which in each approximation permits the removal of the discrepancies in boundary conditions on the
ends of the cylinder generated by the first two solutions.

5. The question of the convergence of the asymptotic series constructed requires special study. Favor-
able results were obtained in [13, 14] for plates.

The ellipticity of system (4.2) and the possibility of satisfying all boundary conditions in each approxi-
mation ensure the absence of angular boundary layers [15].

When series (1.4), 2.1), 3.1), and (4.1) converge they give an exact solution of the original problem.
Their partial sums give an asymptotically exact solution.

In particular, the functions
wy=Up + Va+ Wy and Opp =X+ Yon -+ Zinms

where Ug, X{}nn; V%, Y?nn; W%, Z(r)nn are, respectively, the zero-approximation solutions of systems 2.2),
(3.2), and (4.2), form the simplest asymptotically exact solution of the original problem which satisfies all
the boundary conditions,

The functions w,, = U‘r’l + Vg, Tmn = Xgnn + ann form a solution which is asymptotically exact outside
small (length of the order be) boundary zones of the shell, This solution is determined either directly by inte-
grating systems (2.2) and (3.2), or by successive integrations of "shell" systems (2.3) and (3.3) with "sup-
plementary" equations (2.2a)-2.2¢c) and (3.2a)-(3.2¢).

The functions wy = U} and opqp = Xgnn are a solution which is asymptotically exact outside boundary
zones of the shell of length of the order bve, and are determined either by direct integration of system (2.2)
or by successive integration of (2.3) with the supplementary Eqgs. (2.2a)~(2.2¢c). Thus, the asymptotic method
gives a theoretical basis for so-called iterative theories of shells [11]. It admits iterations refining the Kirch-
hoff— Love theory and iterations refining the zero~-moment theory of shells.

For an anisotropic shell which has reduced resistance to transverse stresses, for example a shell re-
inforced with rigid fibers parallel to the middle surface, the coefficients ey, €4, and e;; in Egs. (1.1) are
substantially larger than the other compliance coefficients. In this case the necessary condition for the solu-
tion fo be represented by the series (1.4), (2.1), (3.1), and (4.1) is

ee & 1,

where e = max (eg3, ey, €;;), which narrows down the domain of definition of the dimensions of the shell in
comparison with (1.3). At the same time the contribution of transverse stresses and strains to the total stress—
strain state of the shell is increased. It becomes increasingly necessary to use the "supplementary" equations
(2.2a)-(2.2c) and (3.2a)-(3.2¢c) in determining the transverse components of the stress and strain tensors in
terms of the tangential components in the first approximation.

Thus, the solution of an axisymmetric elasticity problem has been constructed for an orthotropic cy-
lindrical shell, An analysis of the characteristic roots of system (1,1) established that an axisymmetric elas-
ticity problem for an orthotropic cylindrical shell has a regular (internal) solution and two boundary-layer
solutions with significantly different variability indices: one with a variability index of !/, (Kirchhoff— Love
boundary layer) and one with a variability index of 1 (Friedrichs boundary layer). Iteration systems of equa-
tions have been constructed for determining all three types of sclutions.
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